New Study Examines Links Between Fixed-Site Air Pollution Measurements and Personal Exposure in Greater Paris: Insights from the MobiliSense Project

Past epidemiological studies that used fixed-site outdoor air pollution measurements as a proxy for participants’ exposure may have suffered from exposure misclassification. A new study has just been published that examines these relationships more precisely, confirming that relying on station-measured concentrations as proxies for personal exposures can indeed lead to misclassification.

Past epidemiological studies, using fixed-site outdoor air pollution measurements as a proxy for participants’ exposure, might have suffered from exposure misclassification.

In the MobiliSense study, personal exposures to ozone (O3), nitrogen dioxide (NO2), and particles with aerodynamic diameters below 2.5 μm (PM2.5) were monitored with a personal air quality monitor. All the spatial location points collected with a personal GPS receiver and mobility survey were used to retrieve background hourly concentrations of air pollutants from the nearest Airparif monitoring station. We modeled 851,343 min-level observations from 246 participants.

Visited places including the residence contributed the majority of the minute-level observations, 93.0%, followed by active transport (3.4%), and the rest were from on-road and rail transport, 2.4% and 1.1%, respectively. Comparison of personal exposures and station-measured concentrations for each individual indicated low Spearman correlations for NO2 (median across participants: 0.23), O3 (median: 0.21), and PM2.5 (median: 0.27), with varying levels of correlation by microenvironments (ranging from 0.06 to 0.35 according to the microenvironment). Results from mixed-effect models indicated that personal exposure was very weakly explained by station-measured concentrations (R2 < 0.07) for all air pollutants. The R2 for only a few models was higher than 0.15, namely for O3 in the active transport microenvironment (R2: 0.25) and for PM2.5 in active transport (R2: 0.16) and in the separated rail transport microenvironment (R2: 0.20). Model fit slightly increased with decreasing distance between participants’ location and the nearest monitoring station.

Our results demonstrated a relatively low correlation between personal exposure and station-measured air pollutants, confirming that station-measured concentrations as proxies of personal exposures can lead to exposure misclassification. However, distance and the type of microenvironment are shown to affect the extent of misclassification.

Link to the study.